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Additivity of nonlinear biomass equations

Bernard R. Parresol

Abstract: Two procedures that guarantee the property of additivity among the components of tree biomass and total
tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure
‘2. is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restric-
tions. Statistical theory is given for construction of confidence and prediction intervals for the two procedures. Specific
examples using slash pine (Pinus  elliottii Engelm. var. elliottii) biomass data are presented to demonstrate and clarify
the methods behind nonlinear estimation, additivity, error modeling, and the formation of confidence and prediction in-
tervals. Theoretical considerations and empirical evidence indicate procedure 2 is generally superior to procedure 1.’  It
is argued that modcling the error structure is preferable to using the logarithmic transformation to deal with the prob-
lem of heteroscedasticity. The techniques given are applicable to any quantity that can be disaggregated into logical
components.

RCsumC : Deux procedes  qui assurent  l’additivite  entre la biomasse totale  d’un arbre et ses composantes ont CtC d&e-
IoppCs  en utilisant des fonctions  non lineaires.  Le procede  1 est une simple approche de combinaison et le pro&de  2
est base sur la methode  non IinCaire  des moindres cam%  unities et generaux (la methode  des regressions apparemment
independantes  et non lineaires) avec  des restrictions sur les parametres.  La theorie  statistique utilisee  pour construire
les intervalles de confiance et de prediction est presentee  pour chaque procede.  Des exemples specifiques  utilisant des
donnees  de biomasse du pin de Floride (Pinus  elliottii Engelm. var. elliottii) sont present&  afin de demontrer  et de cla-
rifier les  methodes  sur lesquelles reposent l’evaluation  non lineaire, I’additivite,  la modelisation  des erreurs et la deter-
mination des intervalles de confiance et de prediction. Des considerations theoriques  et l’dvidence  empirique indiquent
que le procede  2 est generalement  meilleur que le procede  1.’  L’auteur soutient qu’il est preferable de modeler la
structure des erreurs plutb que d’employer la transformation logarithmique pour solutionner le probleme  de
I’hCtCrosc6dacitC.  Les methodes  suggerees sont applicables  a n’importe quelle quantite  qui peut &tre  desagregee en
composantes logiques.

[Traduit par la Redaction]

Introduction
A desirable feature of tree component regression equa-

tions is that the predictions for the components sum to the
prediction from the total tree regression. Kozak (1970),
Chiyenda and Kozak  (1984), and Cunia and Briggs (1984,
1985) have discussed the problem of forcing additivity on a
set of l inear tree biomass functions.  Parresol (1999) reviewed
the three procedures one can use to force additivity of a set
of linear component and total tree biomass regressions. The
property of additivity assures regression functions that are
consistent with each other. That is, if one tree component is
part of another component, it is logical to expect the esti-
mate of the part not to exceed the estimate of the whole.
Also, if a component is defined as the sum of two sub-
components ,  i ts  regression est imate should equal  the sum of
the regression estimates  of the two subcomponents. Proper
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inventory control depends on reliable and additive compo-
nent estimates. Studies of ecosystem productivity, energy
flows, and nutrient flows often break down biomass into
component parts (Waring and Running 1998). In addition,
economic analysis depends on products that can be aggre-
gated and disaggregated with consistency (no discrepancy
between components and total). From these arguments it is
easy to recognize the importance of the additivity property.

Since publication of Parresol (1999), questions have
arisen about additivity of nonlinear biomass equations. The
purpose of this article is to present procedures for the
addit ivi ty  of  nonl inear  biomass equat ions and to  demonstrate
these procedures with examples. The examples help to ad-
dress questions relat ing to the choice of  proper model and to
choosing est imates that  are stat is t ical ly reasonable ( i .e . ,  est i-
mates that  have stat is t ical  propert ies  such as unbiasedness,
consistency, and minimum variance). In this article I formal-
ize conditions that ensure that predicted values calculated
from nonlinear component biomass regression equations add
up to those obtained from a corresponding nonlinear total
biomass regression equation. I present theory on construc-
tion of confidence intervals and prediction intervals because
current software packages will not calculate such quantities
for the procedures presented here. It should be emphasized
that the procedures given in this  art icle are applicable to bio-
mass studies in general, be they of a plant or animal nature.
In fact, any dependent regression variable (such as time, en-
ergy, volume, and distance) that can be disaggregated into
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meaningful components can uti l ize these procedures to guar-
antee the property of  addit ivi ty and to est imate the rel iabi l i ty
of the aggregated total .

Biomass modeling preliminaries

Tree biomass is normally estimated through the  use of re-
gression. Trees are chosen through an appropriate selection
procedure for destructive sampling,  and the weights or mass
of the components of each tree are determined and related
by regression to one or more dimensions of the standing
tree. The tree is normally separated into three aboveground
components: (i) bole or main stem, (ii) bole bark, and
(iii) crown (branches and foliage). Occasionally a fourth
component, belowground biomass, which is the stump and
major roots within a fixed distance, is considered. Other tree
component schemes are possible.

The process of physically collecting biomass data can be
very labor intensive. The various tree components, as deter-
mined by the scheme used, can be measured directly as soon
as they are separated from the tree. The only possible error
may be due to faulty measurement instruments or methods.
However,  direct  measurement may be too expensive and t ime
consuming,  so components  are often subsampled.  Small  sam-
ples are selected from the tree component by some usually
random procedure. Green and oven-dry masses of these sam-
ples are determined in the laboratory, and the results are
used to estimate the entire tree component. Briggs et al.
(1987) and Kleinn and Pelz (1987) describe the use of strati-
fied subsampling and subsequent application of ratio-type
estimators. Parresol (1999) gives sample calculations for the
stratified ratio estimator using data from four sweetgum
(Liquidumbar  styracijlua  L.) trees. Valentine et al. (1984)
and Gregoire et al. (1995) describe two procedures, random-
ized branch sampling and importance sampling, for selecting
sample paths to obtain unbiased estimates of the biomass
content of a tree.

Subsampling to est imate the component  biomass produces
an error of measurement of the component. What effect does
this have on our ability to construct and estimate biomass
models? In a linear context, the data-generating process is
presumed to be

y* = x’p  + E

y=y*+v

v, - iid(O, 0:)

where y*  is the unobservable true dependent variable, y is
what is observed (i.e., the sampling estimate of the compo-
nent biomass), and the errors v, are independent  and identi-
cally distributed (iid) random variables with mean 0 and
variance 0:. We assume that E and v are independent and
that y*  = x’p  + E satisfies the classical assumptions (e.g.,
uncorrelated errors, nonstochastic regressor vector x) (see
Greene 1999, Section 6.3). Given this, we have

y+v=x’p+&

y=x’fs+&-V

= x’p  + w

Y - iid(O, 0: + o’,)

As long as v is uncorrelated with x, this model satisfies the
classical  assumptions and can be est imated by least  squares.
The same principles apply to nonlinear models. Hence, this
type of measurement error is not a problem.

Researchers have used a variety of regression models for
estimating total-tree and tree-component biomass. Reviews
of biomass studies (e.g., Parde  1980; Baldwin 1987; Clark
1987;  Pelz 1987; Parresol  1999) indicate that  predict ion equa-
t ions general ly have been developed uti l izing one of  the fol-
lowing three forms: (i) linear additive error, (ii) nonlinear
additive error, and (iii) nonlinear multiplicative error. The
linear additive error model and the nonlinear multiplicative
error model (log transformed) can be litted  by standard lin-
ear least  squares estimation procedures.  The nonlinear addi-
tive error model results in nonlinear regression equations
that require use of i terative procedures for parameter estima-
tion. This model can be written as

[]I Yr = mm + E,

where y, is (total or component) biomass, xI is an (N x 1)
nonstochastic vector of tree dimension variables, p is a (K  x
1) parameter vector, 5 is a random error, and t represents the
tth observation (t  = I, 2,. .., 7). Note that, unlike linear spec-
ifications, the number of parameters, K, and the number of
independent variables,  N, do not necessari ly coincide in non-
linear models. Commonly used tree dimension variables are
diameter at breast height (D), D2,  total height (H),  D*H,  age,
live crown length (LCL), diameter at the base of the live
crown, and sapwood  area (active conducting tissue) mea-
sured at  var ious heights  in  the s tem.

Normally,  biomass data  exhibi t  heteroscedast ici ty;  that  is ,
the error variance is not constant over all observations. If
eq. 1 is fitted to such data then weighted analysis, typically
involving addit ional  parameters,  is  necessary to achieve min-
imum variance parameter estimates (assuming all other re-
gression assumptions are met; e.g., uncorrelated errors). A
nonlinear  s ta t is t ical  model  consis ts  joint ly  of  a  par t  that  speci-
l ies the mean (f(x,$)) and a part  describing variation around
the mean, and the latter may well need more than one pa-
rameter $ to be adequate.

Estimated generalized nonlinear estimation

The estimated generalized linear least squares estimator
(also known as the weighted linear least squares estimator)
is b = (X’ W(0)-‘X)-t  X’ W(0)-’  y, where W(0) is a diagonal
matrix of weights dependent on a fixed number (say P) of
parameters denoted by the (P x 1) vector 0. The dimension
of 8, and the precise way in which 1Ir  depends on 0, relies
on what assumptions are made about the error process.  Parresol
(1993) shows a structure for 1v when E is heteroscedastic
and he provides details on the estimation of 8 from least
squares residuals (e,) for regression models with multiplica-
tive heteroscedast ici ty.

Deriving weights
As Parresol (1993) discusses,  i t  often occurs that  the error

variance is functionally related to one or more of the model
explanatory variables. If we assume each 0: is an exponen-
tial function of P explanatory variables multiplied by the
scale factor 02, then
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PI E[&:] = 0;  = o2 exp(gi0), t =I, 2,...,T

where g;  = [g,t,  gr2, . . . . gtp]  is a (1 x P) vector containing the
tth observation on P nonstochastic variables and 8 = [et,
Cl,, . . . . f&]‘is  a (P x 1) vector of unknown parameters.  The gs
could be identical  to,  or  functions of,  the xs  ( the independent
variables in eq. 1). The relevant gs  may be obvious, and ex-
perience or past work may suggest the proper variables. Of-
ten graphical analyses of the data and (or) residuals will
reveal the appropriate gs. Based on eq. 2, the error structure
(variance-covariance matrix) can be written as follows:

ew(g;  0)

expki  $1
‘.

. 1ew(g+ 9

where all of the off-diagonal elements are zero. If we use the
squares of the least  squares residuals as representative of O!
in eq. 2 and take the natural logarithm of both sides of the
equation, we obtain the linear model

[41 lnef =lncr2 +&0+-V,

where v, is model error and In  c?  is the constant or intercept
term. Harvey (1976) showed that the v,‘s  satisfy the ordinary
least  squares (OLS) assumptions of  homoscedast ici ty and no
autocorrelation, that is, OLS regression will provide consis-
tent2 estimates of the 0s  in eq. 4. Replacing the unknown pa;
rameter vector 0 with the consistently estimated vector, 8,
the following weight matrix (ensuing from eq. 3) results:

[51

ewk; 6

W(6)  = exp(g,’  @
. .

exp(g$&

where exp(g;8) is the weight factor for the tth observation.

Computational methods
In nonlinear estimation we replace the design matrix X

with the partial derivatives matrix Z(p)  defined as

When this matrix of derivatives is evaluated at a particular
value for B, say p,,  it will be written as Z(f3,). The general-
ized nonlinear least squares estimate  of the vector B is that
value of B that minimizes the residual  sum of squares:

171 s(p)  =  &‘w-IE  =  [J’  -  f(X, @)I’*-‘[y  - f(x, p)]

Many iterative algorithms are possible for minimizing the
expression in eq. 7. Most have the general form

PI P, + I = I% - LPnY,

where Y,, = as/@/,  is the gradient vector, P, is a positive
definite matrix known as the direction matrix, and 1, is a
positive number known as the step length. The iterations
start with an initial guess PO  and proceed (n = 0, 1,  2, . ..)
until some predefined convergence criteria are met (e.g., Y,~ =
0) or the predelined  maximum number of iterations are ex-
hausted (failure to converge).  What dist inguishes alternative
algorithms is the definition of P,.*The  Gauss-Newton algo-
rithm is defined by P,,  = [Z(f3,,)‘Ur(0)-‘Z(fl,,)]-‘. If the starting
vector is reasonable and the direction matrix is not ill-
conditioned,3  this  algori thm converges quickly.  The steepest
descent algorithm replaces P, with the scalar value 1.  The
steepest descent method may converge very slowly and, there-
fore, is not generally recommended. It is sometimes use-
ful when the initial values are poor. Another algorithm
highly favored is  that  of  Marquardt*  defined by
P,  = lZ(P,,)’  WV’  Z(P,>  + Wiag(WWWY’  Z@,>>l-‘.
The Marquardt algorithm is a compromise between Gauss-
Newton and steepest descent. As h,  --+  0, the direction ap-
proaches Gauss-Newton; as &  -+ w,  the direction approaches
steepest  descent.  This algorithm is useful  when the parame-
ter estimates are highly correlated.  The Marquardt algorithm
is recommended by many authors (e.g., Ratkowsky 1983;
Draper and Smith 1998).  A description of these and other al-
gorithms and their direction matrices can be found in Judge
et al. (1985, Appendix B) and Seber and Wild (1989). See
Gallant (1987) or Seber and Wild (1989) for details and con-
siderat ions surrounding l,,,  &,,  and the convergence criteria.

When the process has converged we obtain the estimated
generalized nonlinear least squares (EGNLS) estimate b. It
should be mentioned that  i t  is  possible for  eq.  7 to have sev-
eral local extrema and that convergence may not be to a
global minimum. Thus, it is a good idea to try several start-
ing vectors in the i terat ion function (eq.  8)  to ensure that  the
minimum obtained is the global one. Occasionally one may
be faced with a nearly flat  gradient result ing in slow conver-
gence and premature termination of the iterations (loss of
accuracy). Trying different algorithms will often highlight
this  condit ion so that  one can f ine tune the convergence cri-
terion to obtain the desired degree of accuracy. Finally, it
should be noted that  in a  nonlinear  set t ing the i terat ive algo-
rithm can break down. In a linear setting, a low R2 or other
diagnostic may suggest that the model and data are mis-
matched, but as long as the full rank condition is met by the
regressor matrix,  a l inear regression can always be computed.
This is  not the case with nonlinear regression. A convergence
failure may indicate that the model is not appropriate for the
body of data.  For a discussion of these and other issues sur-
rounding optimization, see Greene (1999, section 5.5).

Hypothesis testing and interval estimation
Under appropriate conditions the EGNLS estimate b will

‘Let 6, be an estimator of 8 based on a sample of size 7’. Then & is a consistent estimator of 0 if Jiz  P( 16, - 81~  6) = I, where 6 is an arbi-
trarily small positive number. Br is said to converge in probability to 0.

‘A matrix is said to be ill conditioned when its determinant, relative to its elements, is quite small.
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be approximately normally distributed with mean p and a
variance-covariance matrix that  is  consistently est imated by

[9a] s2(b)  = t32[Z(b)‘!I’(&‘Z(b)]-’

where the scalar e2  is the regression mean squared error
(eq. 7 divided by degrees-of-freedom):

C Y - f(X  WI’  W&‘[Y  - f(X  b>l
T-K

This information can be used to form hypothesis  tests  and
interval estimates on b in an analogous manner to linear
least squares.  For a confidence interval on the predicted mean
value jr, the appropriate variance estimate is

[IO]  v%(j,)  =z(b);s2(b)z(b),

where z(b); is the tth row of Z(b) (see eq. 6). For a predic-
tion interval on an individual (new) outcome drawn from the
distribution of yr,  the variance is

1111 v-  (&,ew))  = B2w,@)  + z(b),’  s2(Wb>,

where w,(d)  is the tth diagonal element of the weight matrix
!I@), or put another way, it is the value of the weight func-
tion (exp(gi8))  at observation t. For further details on nonlin-
ear regression see Gallant (1987), Bates and Watts (1988),
Seber and Wild (1989),  and Greene (1999, chapter 10).

Procedures for additivity of nonlinear
biomass equations

There are three procedures for forcing additivity of a set
of linear tree biomass functions (see the review by Parresol
1999) but only two for nonlinear models, depending on how
the separate components are aggregated. In this section, sub-
scripts refer to tree biomass components (crown, bole, etc.).
In procedure 1, the total biomass regression function is de-
fined as the sum of the separately calculated best  regression
functions of the biomass of its c components:

9, = .A@,,  W

92 =.hh.,W
Cl21 :

I;, = .&ho  b,)
gota,  = 91 +  92 + . . + 9,

Reliability (i.e., confidence intervals) of the total biomass
prediction can be determined from variance properties of l in-
ear  combinations:

C 13~1 W.?total)  = ivar (9;)  + 2x C COV(.v^i)  9j>

i=l i<j

w h e r e

[13b] cov(j;,  j.j) = 0 y , y, $as?g

P v , “, = estimated correlation between yi and Yj
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Procedure 2 is more general and flexible than procedure I
and more difficult  to employ. Statistical dependencies (i.e.,
contemporaneous correlations) among sample data are ac-
counted for using nonlinear joint-generalized least squares
regression, also known as nonlinear seemingly unrelated re-
gressions (NSUR). A set of nonlinear regression functions
are specified such that (i) each component regression con-
tains i ts  own independent variables,  and the total-tree regres-
sion is  a  function of al l  independent variables used;  ( i i )  each
regression can use its own weight function; and (iii) the
addit ivi ty is  insured by set t ing constraints  ( i .e . ,  restr ict ions)
on the regression coefficients. The structural equations for
the system of  nonlinear  models  of  biomass addit ivi ty can be
specified as

YI = f,(X,t PI> + El
Y2  =  f,(X,> P2)  +  E2

[I41  :
Yc = f,CX,> PC>  + E,

Ytotal =ftot;ll~~l~~2~“~~~,~Pl~P2~~~~~P~~  fEtota1

When the stochastic properties of the error vectors are speci-
lied along with the coefficient restrictions, the structural
equations become a statistical model for efficient parameter
est imation and rel iable predict ion intervals .  The procedure 2
or NSUR method is usually preferable to procedure 1. If dis-
turbances or errors in the different equations are correlated
(the normal situation for biomass models), then procedure 2
(formulation in eq. 14) is superior to procedure 1 (formula-
tion in eq. 12),  because NSUR takes into account the con-
temporaneous correlations and results in lower variance.
Two comprehensive references covering NSUR are Gallant
(1987) and Srivastava and Giles (1987).

Example using procedure 1

Consider the sample of 40 slash pine (Pinus  elliottii Engelm.
var. e l l io t t i i )  trees in Table 1.  Trees for destructive sampling
were selected from unthinned plantation growth and yield
plots scattered throughout the state of Louisiana, U.S.A. Trees
were felled at a 0.15-m stump height, separated into compo-
nents of bolewood, bole bark, and crown (branches and fo-
liage) and weighed in the field.  The 40 trees given in Table 1
are a subset of a larger data set from a biomass study by
Lohrey (1984), which are used here for i l lustrat ive purposes.
Tree trunks display shapes that generally fall between the
frustum of a cone and the frustum of a paraboloid (Husch  et
al. 1982). From a conceptual standpoint, volume or mass of
the main stem can be obtained as a solid-of-revolution by ro-
tating a curve of the general form, Y = C(Xq*.‘,  around the X
axis. As the exponent I’ changes, different solids are pro-
duced. This leads to expressions having the functional  form
Y = f(D,  U). From this starting point, I tried functional forms
including the variables LCL and age. I selected the best bio-
mass component  equations based on scat terplots  of  the data
and the minimum of the Akaike information criterion (AIC)”
(Borowiak 1989):

‘The  AK  is widely  used for model discrimination and is computed as AK,  = ln(e/e,/r)  + 2K,/T,  where ei  is the residual vector of the ith
alternative equation, K, is the number of coefficients, and 7’ is the number of observations.
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Table 1. Green mass data for slash pine trees from the state of Louisiana, U.S.A.

Tree
IT
(4

1 5.6
2 6.4
3 8.1
4 8.4
5 9.1
6 9.9
7 10.4
8 11.2
9 11.7

1 0 12.2
11 11.9
12 13.2
1 3 12.2
14 13.7
1 5 14.2
16 15.0
17 15.7
1 8 16.5
19 16.5
20 19.6
21 17.5
2 2 17.8
2 3 18.5
2 4 19.6
2s 18.5
2 6 19.8
2 7 20.6
2 8 21.6
2 9 19.8
30 22.9
3 1 23.6
32 23.1
3 3 24.1
34 26.4
3 5 24.6
36 25.1
3 7 29.0
3 8 28.4
3 9 31.8
40 33.0

Hb
(m)

LCLC
(m)

Age
(vears)

Green mass (kg)
W o o d Bark Crown Tree

7.9 2 . 1
8.5 1.2

10.7 2.7
11.3 3.4
11.0 4.3
13.1 3.4
14.3 5.5
14.6 4.0
14.3 4.0
14.9 6.1
16.8 4.6
13.7 4.6
15.8 5.5
18.0 2.4
16.5 6.4
20.1 3.0
16.8 4.9
17.1 4.9
17.1 4.0
13.7 6.7
19.2 7.6
18.3 6.4
17.7 6.4
19.8 7.6
22.9 4.0
18.6 6.7
17.4 5.8
17.7 8.2
18.9 7.3
19.8 8.5
18.3 7.9
18.9 7.9
21.3 9.4
19.2 7.3
25.0 5.8
19.8 8.5
20.4 8.5
26.8 1.3
27.4 8.2
27.7 10.4

21
21
20
21
21
21
32
19
21
21
3 2
2 0
19
3 2
19
3 2
21
20
21
16
19
21
21
19
3 2
21
21
20
19
19
2 0
21
21
19
3 2
21
2 0
3 2
3 2
45

6.5 2.3
1.4 2.6

17.6 4.5
18.5 4.3
22.6 5.4
30.6 7.4
32.9 6.7
40.6 9.3
46.0 10.7
51.6 13.1
60.4 10.1
62.8 IS.2
67.5 12.9
81.2 12.5
94.3 18.2

123.4 16.5
107.3 21.5
123.8 22.1
151.6 24.6
140.4 25.1
170.4 27.4
169.6 31.7
160.3 36.9
199.8 38.7
231.6 29.6
217.9 33.9
216.0 32.6
200.6 40.2
217.5 38.5
314.8 43.1
287.1 63.4
290.9 44.3
320.1 SO.6
308.6 65.7
403.0 49.8
390.4 48.8
445.2 60.4
736.4 84.0
110.9 93.8
921.3 108.0

1.0 9.8
2 . 1 12.1
2.3 24.4
4.2 27.0
5.6 33.6
5.5 43.5
6.4 46.0
6.2 56.1
1.7 64.4
6.1 70.8
5.4 75.9

10.7 88.7
15.3 95.7
8.7 102.4

11.2 123.7
1.7 147.6

19.7 148.5
28.9 174.8
16.8 193.0
46.2 211.7
16.8 214.6
24.0 225.3
47.5 244.7
19.7 258.2
24.6 285.8
45.8 297.6
61.2 309.8
75.4 316.2
62.0 318.0
43.2 401.1
51.7 402.2
76.7 411.9
15.6 446.3

116.0 490.3
69.8 522.6
83.5 522.7
88.0 593.6
79.9 900.3

170.2 1034.9
169.2 1198.5

“Diameter at breast height
‘Tree height.
‘Live crown length.

[15I j&,.k  = 

9,rmm = b,Db2 H”i

where D is diameter at breast height and H is total tree
height. Starting with a weight of unity for each observation,
nonlinear least  squares est imates of the coefticients  in eq.  15
were obtained using the iteration function in eq. 8 (Gauss-
Newton algorithm in PROC NLIN; SAS Institute Inc. 1989).
Ini t ia l  values (PO) to begin the i terat ions were obtained by log
transforming the equations and applying OLS. Scat terplots  of

the residuals (Fig. 1) revealed significant heteroscedasticity
(as expected). An error model of the form shown in eq. 4
was fi t ted to the residuals to obtain W(0).  This was done for
each equation in eq. 15. The coefficients for each equation
were then re-estimated using the iteration function in eq. 8
with its estimated weight matrix W(0). Table 2 lists the coef-
ficients along with their standard errors, asymptotic confi-
dence intervals, weight functions, and fit statistics. From
examining Table 2 it can be seen that weighting reduced
standard errors on five of the seven coefficients. More im-
portantly,  the confidence intervals on the coefl’icicnts for the
crown biomass model indicate nonsignificance (at the c(  =

0 2 0 0 1  NRC C a n a d a
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0.05 level) for two of the parameters if the model is not weighted; however, under weighted least squares the parameters p,
and 13 are significant and their importance in the model is established.

Under procedure 1 for  addit ivi ty,  total  t ree biomass is  s imply the sum of the components.  For example,  using the weighted-fi t
coefficients in Table 2 and the set of equations in eq. 15, a tree with D = 20 cm and H = 17 m gives the following: jwoMI  =
186.4 kg, jbark  = 34.7 kg, and j,,,,, = 47.0 kg; therefore, ytotai  = 186.4 + 34.7 + 47.0 = 268.1 kg. The error for each mean
component prediction is computed using eq. 10. For jwood  the partial derivatives vector z(b)’ is characterized by (recall that
z(b)’ = $(x, b)@b’)

[(D'H)',  bj(D2H)" ln(D2H)]

Thus, for D = 20 cm and H = 17 m and using the weighted-fi t  coefficients  for  wood biomass in Table 2,  we obtain

z(b)’ = [(6800)‘.0”*5 0.016 363 (68OO)i.*ss5  ln(6800)] = [l 1 394.365 1645.35771

The variance-covariance matrix of b is computed from eq. 9a and for the EGNLS wood biomass regression is

s2(b) 3.3004 x 1 o-6 -2 .3577  10-j

x

= -2.3577 x lo-” 0.000 1714 I

Therefore, the variance of jwood  from eq. 10 is

-2.3577 x lo-’ 11394.365G? (9wood) = [l 1394.365 1645.35771 11 1 = 8.46 kg2
0.000 171 4 1645.3577

For the other two components we obtain vK+  (jbaTk)  = 0.53 kg2 and v%  (j,,,, ) = 10.34 kg2.  The correlations (computed using
PROC CORR: SAS Institute Inc. 1990) between the weighted biomass components are

P .Yanti  .hrx  = 0. I93  P YW<ti  Y,,,”  = 0.O  l ’ and  0 hark  .Ycmwn  = o.2g

therefore, using eq. 13 we obtain

viG? (j,,,) = 8.46 + 0.53 + 10.34 + 2 x 0.19 xJm + 2 x 0.01 x Jm+ 2 x 0.29 xJm

= 21.68 kg2

Confidence intervals are constructed as

For an approximate 95% confidence limit, we will use +2(21.68  kg’)*.’  giving

1161 268.1 + 9.3 kg

For a prediction interval we will  need the variances computed from eq. 11.  For jwo,,dcne,.,) we obtain from Table 2 the values 6’ =
2.3446 x lo4  kg2 and ~(4) = (D2H)2.'14  = (202 x 17)2.“1  = 126 451 458. From the variance for jwood  we know that
z(b)‘s2(b)z(b) = 8.46 kg2. Therefore, from eq. 11 we obtain

vxGit  (j&,od~new~)  = 2.3446 x 10-e  kg2  x 126 451 458 x 8.46 kg2  = 304.94 kg2

For the other components we obtain: v%  (jbark(newf)  = 18.66 kg2 and *  (.$,,,,(,,,l ) = 23 1.92 kg2.  From eq. 13 (and the previ-
ously computed correlations) we have

52  (jtotalcoew,)  = 304.94 + 18.66 + 23 1.92 + 2 x 0.19 x J304.94  x 18.66 + 2 x 0.01 x 4304.94 x 23 1.92

+ 2 x 0.29 x ,/I  8.66 x 23 1.92 = 627.66 kg2

Hence, an approximate 95% prediction interval on jto,nl(newj  is (using t = 2):

[17] 268.1 Z ! Z  50.1 kg

Some readers may be surprised about how much larger the @(jrotaitorw,)  is over v%(y^,,,,,)  in this example. While the
65 ~,ora,~new~)  is expected to e arger because of the second variance component, heteroscedasticity reflected in the  size ofb 1
~(0) has a big influence on the overall  variance estimate. Without correcting for heteroscedasticity,  variance on the larger trees
would be underestimated and variance  on the smaller trees would be overestimated.
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Fig. 1. Scatterplots of residuals from (A) wood regression,
(H) bark regression, and (C) crown regression showing signiti-
cant heteroscedasticity. D, diameter breast height; H, tree height.
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Examples using procedure 2: NSUR estimation

Initial remarks
In this procedure we consider a set of nonlinear models

whereby we allow statist ical  dependence among components
and the total tree biomass. A contemporaneously correlated
set of nonlinear biomass models whose parameters are esti-
mated by NSUR with parameter restrictions will result in ef-
l icicnt  est imates and addit ive predict ions.  The model for  total
biomass must be a combination of the component biomass
models to be additive. Using the same equations listed in
eq. IS the system of equations becomes

Cl81  = b,,Dbz

where gtotal  is  restricted to have the same independent variables
and coefficients as the component equations.  The same error or
weight functions (Table 2) will be used for the 3 component
models.  The error function for jtotal  was determined by model-
ing the residuals  from jtotal  using the (unweighted) coefhcients
from Table 2.  From scatterplots and the AIC I chose the error
model: In  e: = In cr*  + 8 ln(D, x H,) + vt.  Upon applying OLS,
the fol lowing weight  funct ion resul ted:

1191 ~(6) =(DxH)“.“”

A brief explanation of fitting a system of equations such as
in eq. I8 by NSUR follows.

NSUR estimation
The general case of M contemporaneously correlated non-

linear models can be written as

Y1  =f,(XP)+E1
Y2  = fi(X 6) + &2PO1  :

YM = f,CX  P> + EM

or al ternatively

y = f(X, PI + E

where

The same matrix X and the same parameter vector p  appear in
al l  equat ions to  al low for  the possibi l i ty  that  some explanatory
variables, and some parameters, could be common to more
than one equation. Each equation can, of course, be a different
nonlinear function of X and p.  If weights are to be used, the
system matrix of  weights  is  wri t ten in block-diagonal  form as

c%I?,(@,)  0 ... O  10 W,(0,) ...WV = :
1. .

: . . :O.
0 0 ‘.. W,(@,) J

where W;  (short for Ur,($,))  is a diagonal matrix of weights
for the i th system equation.  Let us define a new matrix A as

A =$I-’

where JW’  is an clementwise square root operation on the
inverse of the weight matrix (see Searle 1982, pp. 201-202).
The implicit assumptions for eq. 20 are (i) E[Aiei]  = 0, the
mean of the  weighted residuals is zero for each system equa-

0 2001 NRC Canada



872 Can.J.  For. Res.Vol.  31, 2001

Table  2. Coefficients @SE),  and 95% confidence intervals (in parentheses), weight functions, and fit statistics from nonlinear regres-
sions on slash pine biomass data.

h b, 4 Weight function
Unweighted
W o o d 0.016 542 c 0.004 2 9 1.0571 + 0.0265 1

(0.008, 0.025) (1.003, 1.111)
Bark 0.055 098 + 0.015 4 2.1519 f 0.0862 1

(0.024, 0.086) (1.977, 2.326)
Crown 0.012317 zt 0.007 6 9 3.0380 r 0.310 -0.33691 f 0.321 1

(-0.003, 0.028) (2.409, 3.667) (-0.987, 0.313)
Weighted
W o o d 0.016 363 rt 0.001 82 1.0585 + 0.0131 (g2fq2.114

(0.013, 0.020) (1.032, 1.085)
Bark 0.046 277 + 0.007 0 8 2.2093 c 0.0522 p.715

(0.032, 0.061) (2.104, 2.315)
Crown 0.027 378 rt 0.012 8 3.6804 rt 0.257 -1.262 4 +Z 0.375 ~7.322  e-O.OMIXSN”

(0.001, 0.053) (3.159, 4.202) (-2.021, -0.503)

*R’  = I - SSl$SST;  for weighted regression SSE = bW( i)-‘L  and SST = y”W(  i)-‘y,  where y ” = y - 7 and
y = vecdiag(W(0)w’)‘y/sum  (vecdiag(W(@)-‘))  (Steel et al. 1996, pp. 284-285).

R2” 62

0.984 752.15

0.962 25.56

0.917 160.80

0.989 2.3446 x lO-h

0.976 2.6609 x 10”’

0.927 3.9417 x 10-7

tion;  and (2) E[Aee’A’] = %@I, where 0 is the Kronecker product, 2 is an (M x IV) weighted covariance matrix whose (i,
j)th element is given by oij (the covariance of the errors from weighted equations i and j) and E[A;\iei&~ A;] = c@ To form the
NSUR estimator we need 2. Generally the variances and covariances of eq. 20 are unknown and must be esttmated.  To esti-
mate the Ok,  we first tit  each system equation by EGNLS and obtain the residuals ei  = yi - f;(X, b). Consistent estimates of the
variances and covariances are then calculated by

[21] 6,  = 1
(T - K;)O.5( T - Kj)0.5

e:AiAjej

where the degrees-of-freedom corrections Kj and Kj are the number of coefficients per equation (Greene 1999, p. 617). Let us de-
fine 2 as the matr ix containing the est imates Bij from eq.  21.  To specify the NSUR est imator,  let  us extend the notat ion from the
Estimated generalized nonlinear estimation section. To be clear,  there are T observations per equation,  M equations,  and K  pa-
rameters (p has dimension (K x 1)). As before, we need the matrix of partial derivatives of the residual with respect to the pa-
rameters. For our NSUR system the partial derivatives matrix F(P)’ is a (K x MT)  matrix given by

,221
I

When evaluated at a particular value for p, say pi,  it will be written as F@,).  If each equation contains a different set of pa-
rameters, d~‘/df3 is a block-diagonal matrix. The generalized NSUR estimate of the vector p is that value of p that minimizes
the residual sum of squares

[23] R(P) = E’&-‘@I)AE = [y  - f(X, P)]‘A’(Z-l@I)A[y - f(X, p>]

Under the Gauss-Newton gradient  minimization method,  using the est imated weights and covariances,  the est imated general-
ized NSUR iteration function is

1241 h,+I = & + l,,[F(&)‘&%-’  @I)ilF(&)]-‘F(&)‘&$-’  01)&y  - f(X, p,)]

where  1,,, as in eq. 8, is the step length. When the process has converged  we obtain the estimated generalized NSUR estimate
b.  As with EGNLS, obtaining convergence can be a “fun” challenge. The analyst often has to change the step length, try new
init ial  values,  etc.  I t  should be noted that  one can take the NSUR process a step further by re-est imating z from the NSUR re-
siduals (via eq. 21) and feeding this back into eq. 24 to form a new estimate for p, and so on, until convergence. When the
random errors follow a multivariate normal distribution this estimator will be the maximum likelihood estimator. For a discus-
sion of the pros and cons of generalized least squares and maximum likelihood see Carroll and Ruppert (1988, pp. 18-23).

The estimated covariance matrix of the parameter estimates is calculated as

[25] lt,,  = [F(b)‘&%-‘OI)8F(b)]-1

The NSUR system variance is based on eq. 23 and is obtained from

P61
R(b) _ e/k&’ C3I)ae

&JR = MT-K  -
M T - K
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The estimated variance from the ith system equation on the tth observation ji, (where for simplicity I drop the t subscript) is
given by

~271 5;  = f;W’i;,  f;(b)

where f;(b)’ is a row vector for the ith equation from the partial derivatives matrix F(b). One can construct the biomass tables
and the associated (1 - a) confidence intervals for a mean value (y^J  and prediction intervals for a predicted new outcome
(yicnew,)  by the formulas for the biomass estimate from the ith system equation:

[28al j; = .& b)

mean confidence interval:

w3bl y^ f$x/2) s;,Jr

and predict ion interval:

where Biiwi@J is the estimate oi the conditional variance of the ith system equation (Bii is the (i, i)th  element of 3, re. eq. 21,
and adding the t subscript, w,(O,) is the estimated weight).

Example 1
For an additive biomass system M = c + 1, thus the system under consideration in eq. 18 has A4 = 3 + 1 = 4 equations. The

specific system of four equations in eq. 18 can be combined into one model written in matrix notation as

or alternatively y = f(X, p) + E, where the subscript 1 refers to the model for wood biomass; subscript 2 refers to the model
for bark biomass;  subscript  3 refers to the model for  crown biomass;  subscript  4 refers to the model for  total  t ree biomass;  and
the vectors y, p, and E are stacked column vectors (in particular p = [p;  pi  pi] = [pii plz hi b2 &, [j, &IL). The parameters
in eq. 29 were estimated from eq. 24 (using PROC MODEL (SAS Institute Inc. 1993),  and I supplied 2, calculated from
eq. 21, to the MODEL procedure). Table 3 lists the coeflicients and their standard errors for the weighted system. Note that
the weighted NSUR standard errors for all  seven coefficients are smaller than the corresponding EGNLS standard errors l isted
in Table 2. This indicates that there were significant contemporaneous correlations and a gain in efficiency in parameter esti-
mation. Regression results, in terms of coefficients of determination and root mean square errors, are given in Table 4.

Using the coeflicients in Table 3, if D = 20 cm, H = 17 m, and i = 2 (bark biomass), we have from eq. 28~:  x’ = [0 20 0 0] and
j2 = 0.046 040 (20)2 2112  = 34.7 kg. The error for the mean prediction is computed using eq. 27. For g2  the vector f 2(b)’ is.
specified by

[0 0 Db?z  b,,Db22  In(D)  0 0 0]

thus

fz(b)’ = [0 0 753.140 32 103.876 68 0 0 0]

The covariance matrix of b is calculated from eq. 25 and is

2.94 x 1 O-6 -2.12x 10-S 1.95x10-h -1.42x lo-’  -1.54x 10-h 1.83x10-s 1.98 x lo-’
-2.12x 10-5 1.55 x 1 o-4 -136x10-” 1.01x10-” 1.14x 10-S -1.04 x 1 O-4 -1.82 x 1 O-4

1.95 x 10-6 -136x10-” 2.80 x lo-” -2.07 x 1O-4 -3.65 x 1O-6 1.70x10-” 7.30 x 10-S
-1.42x10-’ 1.01 x 1W4 -2.07 x lo-” 1.57 x 10-s 3.00x  10-s -4.80 x 10-j 6.98 x lo-”
-1.54x 1o-6 1.14x10-” -3.65 x 1 O-6 3.00 x 10-s 1.90x  10-5 8.20 x lo-” -5.31 x lo-”

1 .X3  x lo-’ -1.o4x1o-4 1.70x10-5 -4.80 x lo-’ 8.20 x lo-’ 2.17x  lo-* -2.42 x 1 O-2
1.98 x 1 O-5 -1.82~10-~ 7.30x  10-5 -6.98x 1O-4 -5.31 x lo-’  -2.42x lo-* 3.74 x 1 o-2
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So from eq. 27 we have

S;,=  f2(b)‘%&b) = 0.44 kg2_

A 95% confidence interval for this point estimate can be calculated from eq. 28b  and is (t  = 2) 34.7 + 1.3 kg. For i = 4 (total
tree biomass) we have d  = 16800  20 20 171  from eq. 28a and

f4 = bi,(6800)h~~  + b2i(20)‘=+  b3,(20)~~(17)b3~  = 264.2 kg

For j4 the vector f4(b)  is specified by

(D2H)‘~~
b,,(D*f@  ln(D*H)

ghzz

b2]  D’+z  In(D)
@hz  ~4,

b3,Dh12  Hbl~  In(D)
b,,D’iz  Hhl,  In(H)

The error is computed using eq. 27 and results in

S;>= f+s(b)‘$&b)  = 0.44 kg2

From eq. 28b the 95% confidence interval (using t = 2) is

WI 264.2 f 6.3 kg

In comparing the NSUR confidence interval in eq. 30 with the procedure 1 confidence interval in eq. 16, we see that the
NSUR based confidence interval is 32% narrower (k6.3 vs. 29.3 kg).

The prediction limits for our point estimate of total tree biomass are calculated using eq. 28~.  From eq. 26 we calculate the
system variance: B&n,  = 0.933. From eq. 21 we calculate the variance of the fourth system equation: a‘&  = 8.46 x 10e7  kg2.
The weight factor for jtoral  is computed from eq. 19: w = (20 x 17)“.45 = 541 504 742. Inserting the pieces of information into
eq. 28c, we obtain the following 95% prediction interval:

u11 264.2 kg of: 2 9.77 kg2 + 0.93 x 8.46 x 10-7kg2  x 541504 742 = 264.2 & 41.8 kg

As is immediately obvious from comparing the prediction limits in eq. 31 with those in eq. 17, the procedure 2 or NSUR pre-
diction limits are smaller, in fact 16.6% narrower. The interval from eq. 31 fits entirely inside the interval from eq 17: 1222.4,
306.01 versus L218.0,  3  18.21.

Example 2
In the previous example we assumed that the error terms in our system were  additive (as in eq. I). Looking at the individual

equations in eq. 18, one may want to assume equation errors that are multiplicative to derive log-linear models. The logarith-
mic transformation tends to stabilize heteroscedastic variance (if o,  is proportional to E[y];  Neter et al. 198.5, pp. 137-I 38)
and is an alternative to deriving weights for each equation in the system. For example with ywood  a model with a multiplicative
error term and the corresponding log-linear model are

ywood  =PI~(D~~@~E;~~Y~~~~I  =~~PII  +I$2 WD2W+ln&

Similarly, ,vhark  and ycrown can be linearized. However, because of the additivity restriction, the inherent model for ytota,  can-
not be linearized.  Thus NSUR must be used as opposed to linear seemingly unrelated regressions for the log-transformed
equations in eq. 18. The resulting system of equations is

lnjwood  = In blL  +  b,, In(D2H)

WI
lnjbXk  =  Inb2,  +  b2z  InD

In  jcroivn  = In b,,  + bx2  In D + b,, In N

In j,,,,i = In[b,  1(D2H)“12  + b,,D’x?  + b3,D”~zH”l~  1

This system  was fitted using NSUR (with PROC MODEL in SAS software;  SAS Institute Inc. 1993).  The coefficients and
their  SEs  are listed in Table  3. The log-transformed NSUR coefficient SEs  compare very favorably against the EGNLS
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Table 3. Coefficients and standard errors (GE)  from fitting the
slash pine biomass data with nonlinear seemingly unrelated re-
gressions.

b I I
b 12
b21

b,,
bII
hz
4,

Weighted Log transformed
0.016245 t 0.00172 0.016530 rt  0.00170
1.0590 rt  0.012 4 1.0568 + 0.0121
0.046040 rt  0.005 30 0.046 206 -r- 0.005 59
2.2112 rt  0.0397 2.201 1 of: 0.0423
0.014015 c 0.00436 0.035861 2 0.0143
3.5098 If: 0.147 3.8704 * 0.135

-0.87190 t 0.193 -1.5717 rt  0.216

coefficient SEs  in Table 2, being smaller for six of the seven
coefficients. This is not surprising, since we know from ex-
ample 1 there are contemporaneous correlations between the
equations. In comparing the weighted NSUR coefficients
and SEs  against the log-transformed NSUR coefficients and
SEs  in Table 3, the major differences occur with b,,  and 
These two coefficients essentially doubled in size under the
log transform of the data and their SEs  increased, threefold
for b,,.  This is indicative that o,  is not strictly proportional
to Eb],  especially for ycrown. Two fit statistics, tit index (FI,
analogous to R2)  and root mean square error (RMSE), for the
equations in eq. 32 are given in Table 4. The values of FI
and RMSE for the wood and bark equations between the
weighted NSUR and log-transformed NSUR are essentially
identical .  The values of the fi t  s tat ist ics for the crown and tree
equations are better using weighted NSUR. For this data,
modeling the individual  equat ion error  s t ructures gives com-
paratively better results than using the logarithmic transfor-
mation.  This  issue of  using weighted versus log-transformed
data wil l  be considered more ful ly in the Discussion sect ion.

Using the coefficients in Table 3 for log-transformed data,
as before, if D = 20 cm and H = 17 m, we have

In jtotal = 5.5782;

thus S;rotal  = exp(S.5782)  = 264.6 kg

To place predict ion bounds on ln~,,,,,  use eq. 28~.  The partial
derivatives vector,  f4(b), needed to compute S* is  specif ied
as follows. Let u  = b,,(D2H)‘~~  + b2,D’b?  + b3,‘!hHb~~,  then
w e  h a v e

f,(b)  =

(D2H)h12  /u
b,,(D2H)‘~2  ln(D2H)/u

Db>/U

b2,D’zz  ln(D)/u
Dh,  Hbn/U

b,,Dhl?  H’?i  ln(D)/u
b3,D”~~  Hi’,,  ln(H)/u

For this example we have

S2 = 2 076 x lO-Jfl .
B&~ = 0.9884, and 631 = 6.954 x lo-”

875

Table 4. Nonlinear seemingly unrelated regression results for the
slash pine biomass system.

Model

Wood

Weighted
FIU

0.984

RMSE”

27.1

Log transformed

Fl” RMSE”

0.984 27.1
Bark 0.961 5.0 0.961 5.1
Crown 0.909 13.0 0.879 15.0
Tree 0.988 31.2 0.986 33.9

“Fit index; Fl = 1 - Z( y,  - ii)*/Z(  yi  - ji)*.  where the dependent
variable y  is in original data scale.

“RMSE  is root mean square error in original data scale

Since no weight factor is used (the log transformation does
the weighting) we set w = 1. An approximate 95% predic-
tion interval (t  = 2) is

[33] 5.5782 iz 0.1683 = [5.4099,  5.74651;

on the arithmetic scale [223.6,  313.11

Note that the interval [223.6, 313.11 is not symmetric
about .qtota,.  This occurs because the log transform is a non-
linear transformation. That aside, in comparing the interval
in eq. 33 against the interval in eq. 3 1,  we see that the log-
transformed based interval  encompasses an addit ional  5.9 kg
width, which translates to a 7.1% increase.

Discussion

Addit ivi ty of  component  biomass regression equations has
concerned forestry professionals, since Kozak (1970) first
presented methods of ensuring additivity with linear equa-
tions.  With the speed afforded by today’s computers and the
availabil i ty of  sophist icated software,  nonlinear  model  devel-
opment plays a more crucial role than ever before. However,
care must be exercised to ensure reasonable functions. A
critical issue in data analysis is the selection of a good ap-
proximating model that represents the data well. Depending
on the number of variables available, graphs in two, three,
and four dimensions (PROC SPECTRAVIEW in SAS (SAS
Institute Inc. 1994) provides four-dimensional views of data
by using a color gradient to display values of a fourth vari-
able in three-dimensional space) can help in the selection of
a number of empirical models. Theory can aid in selecting
the independent variables and in specifying functional  forms
of the regression relation, such as geometry of the entity,
knowledge of interaction effects,  restr ict ions in the response
space (e.g., y > 0), hypothetical data dependencies (e.g., lag
effects,  autocorrelation),  and so on. A commonly used basis
for choosing among competing models is Akaike’s informa-
tion criterion. The AIC is highly touted by a number of au-
thors (e.g., Cavanaugh 1997; Burnham  and Anderson 1998),
as is Amemiya’s (1985) prediction criterion (APC)S.  A re-
cent. development that may prove to provide better model
discrimination is the information complexity (ICOMP) crite-
rion of Bozdogan (2000). The ICOMP criterion combines a
badness-of-fit term with a measure of model complexity by

‘The APC is computed as APC,  = e;e,/(T  - K,)(l  + K,/T),  where ej is the residual vector of the ith alternative equation, K,  is the nutnber
of coefficients, and T  is the number  of observations.

0 2001 NRC Canada



876

taking into account the interdependencies of the parameter
estimates as well  as the dependencies of  the model residuals.

Unlike linear model estimation, nonlinear estimation can
pose many challenges. For one, initial parameter estimates
must be specified.  A variety of methods are available for ob-
taining starting values. Often, experience can be utilized to
provide good starting values. When it is possible, an initial
consistent estimator of p will be a good starting vector. For
example, many equation forms (ignoring error) can be
linearizied by a transformation (such as by logarithms) and
undergo OLS estimation to obtain starting values, even
though the underlying model  is  intr insical ly  nonl inear  because
of additive errors. This is how I obtained initial values in the
Example 1 section above. Neter et al. (1985, p. 479) sug-
gested the following procedure.  Select  K representative obser-
vations and set  the nonlinear regression function fix,,  p) equal
to  yI  for each of the K  observations ( thereby ignoring the ran-
dom error). Solve the K equations for the K parameters and
use the  solut ions  as  the  s tar t ing values .  St i l l  another  possibi l -
ity is to do a grid search in the parameter space. Select in a
grid fashion various trial choices of PO,  evaluate the residual

sum of squares S&J = 2 [y, - f(xr,  p0)]2  for each of these
f=l

choices,  and use as the start ing values the PO  vector for which
S&J  is smallest.

Once the starting values for the parameters have been ob-
tained, a modeler is still faced with many potential choices.
An iteration method, whether Gauss-Newton, Marquardt, or
one of the others,  needs to be selected.  A solution may be to
a local minima, so several starting vectors should be tried to
ensure that the global minimum of the residual sum of
squares  is  obtained. Problems with convergence can arise for
many reasons. The matrix of partial derivatives, the direction
matrix, may be singular, possibly indicating an over-
parameterized model. It is possible that parameters will enter
a space where arguments to such functions as logs and square
roots  become i l legal ,  resul t ing in overf lows in computat ions.
Obviously a careful choice of the model and starting values
can circumvent such problems. Still, even with an appropri-
ate model ,  the i terat ion method may lead to s teps that  do not
improve the estimates. The modeler may need to control the
step lengths, l,,, try a different set of starting values, or
switch the iteration method. The gradient could be nearly
flat causing small changes in the residual sum of squares
and (or) small changes in the parameter estimates with suc-
cessive iterations but still be far from the solution. Fine tun-
ing of the convergence criteria may be necessary in such a
situat ion to prevent  premature s topping of  the i terat ions and
a subsequent loss of accuracy in the coefficients.  As should
be obvious,  the select ion and est imation of  nonlinear  models
requires much more sophistication on the part of analysts
than does linear models. Ross (1990) provides insights into
why some models are diflicult to fit and discusses the use of
“stable parameter systems.”

Heteroscedast ici ty is  almost  a  certainty in biomass data and
must  be deal t  with to achieve minimum variance est imates and
reliable prediction intervals. The generalized method of mo-
ments (GMM) is  an est imation method that  produces eff icient
parameter  est imates under heteroscedast ic  condit ions without
any specification of the nature of the heteroscedasticity (Greene
1999).  However,  one cannot generate bounds on the predictions
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without specifying or otherwise est imating the error structure.
Prediction intervals are necessary for rel iabil i ty analysis and
economic planning; therefore,  I  generally do not recommend
GMM, preferring generalized least squares or the principle of
maximum likel ihood.  The problem of heteroscedast ici ty then
becomes one of estimating a weight factor or performing a
transformation to stabilize variance. A treatise on the subject of
transformation and weighting in regression is  given by Carrol l
and Ruppert  (1988).  Theoretical  considerations may lead one
to use a transformation such as logarithms (e.g., if one believes
the equation errors are multiplicative), but in practice I have
found modeling the error structure gives empirical  results  as
good as or  bet ter  than applying transformations such as square
roots  or  logari thms.  In looking at  Tables 3 and 4,  the weighted
and log-transformed equations for wood and bark biomass have
similar SEs  on the corresponding coeflicients  and closely matched
FI and RMSE values; however, for the crown and total bio-
mass regressions the weighted fit  is superior in terms of SEs  on
the coefficients, FI, and RMSE. The log transformation is quick
and simple to apply compared with the effort needed to de-
velop error functions. The slight 7.1% increase in the log-
transform based prediction interval (eq. 31 vs.  33) for the ex-
ample total  t ree biomass predict ion may seem inconsequential ,
but  when considering hundreds or thousands of trees the cumu-
lative effect can be considerable.  Transformations such as the
log or  square root  lead to predict ions with an inherent  bias on
the original arithmetic scale.  There are theoretical corrections
for the bias (Miller 1984),  but data rarely are “ideal”; thus,
some studies have shown these correct ions tend to overest imate
the true bias (e.g., Madgwick and Satoo 1975; Hepp and
Brister 1982).  For these and other reasons I  prefer to model the
error structure rather than use the logarithmic transformation to
correct for heteroscedasticity in biomass data. See Parresol
(1993, 1999),  Williams and Gregoire (1993),  and Schreuder
and Williams (1998) for examples on modeling the variance
structure.

Iterative reweighted (nonlinear) least  squares could be used
as a further refinement to remedy heteroscedasticity.  That is ,
start with the unweighted least squares estimate of p, com-
pute residuals and fit  the weight function then solve for p,
compute residuals and relit the weight function then solve
for p, and so on for C cycles.  There is  no clear consensus in
the statistical literature about the best choice of the number
of cycles, C. Goldberger (1964) and Matloff et al. (1984)
propose C = I, the latter showing from their simulation
study that “the first iteration is usually the best, with accu-
racy actually deteriorating as the number of cycles is in-
creased.” Carroll and Ruppert (1988), based on their own
simulation work, recommend C = 2. In my work with tree
biomass data I have found little difference between using
one or two cycles.

The property of additivity, as mentioned in the Introduc-
tion, leads to consistency among equations. The examples
presented show a total  tree (above stump) decomposed into
three components: bole wood, bole bark, and tree crown. If
the crown component were separated into two sub-
components, say foliage and branches, we would want the
regressions on the subcomponents to give predictions that
sum to the prediction from the crown regression, while still
maintaining the overall additivity to the total. To maintain
the  property of additivity under this scenario  using the
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NSUR procedure requires that the crown component model
be a combination of the subcomponent models with parame-
ter restrictions between the subcomponent models and the
component model. To illustrate, let us expand upon the sys-
tem in eq.  18 by adding equations for foliage and branches:

[p$] ~foliage
 b3,Dhu  H”?

9 ~,ranc,,es  = hu(D  x LCL)  b4z

n
YCKWI = b3,Db,2Hh3  + b4,(Dx  LCL)‘$z

jtotd  = b,,(D*H)‘f2 + b,,Dk-2  + b,,Dh~~Hb~l
+ b4,(D  x LCL)b~2

The expressed restrictions in eq. 34 guarantee that the fo-
liage and branch predictions will sum to exactly equal the
crown prediction, plus the total prediction will still exactly
equal the sum of the component predictions. With the right
restrictions many layers can be added to a system in such a
way as to maintain the property of additivity. This property
can be imposed on any quantity that can be disaggregated
into a system of logical components.

I have presented methodology on two alternative proce-
dures that guarantee additivity in the nonlinear case. The
methodology presented shows computation of standard er-
rors on the parameter est imates and computation of standard
errors for confidence and prediction intervals on the pre-
dicted values. This allows judgment of the significance of
coefficients (see Table 2, coeflicients  b, and 6,  for the crown
regression) and aids in the assessment of the reliability of
the equation predictions. Comparing standard errors of the
coefficients between the two procedures for the slash pine
biomass system shows a gain in efficiency using procedure
2, the NSUR approach, over procedure I, the simple combi-
nation approach. Since components are not independent
there will be contemporaneous correlations. The strength of
the correlations determines the gain in efficiency. The t ighter
confidence and prediction intervals on the total biomass
yields in eqs. 30 and 3 1,  as compared with eqs. 16 and 17,
are a direct consequence of the more efficient (minimum
variance) NSUR estimator. In general, the procedure 2 or
NSUR procedure can be recommended over procedure 1.’
Users can modify the program to lit any desired system of
biomass  equat ions .

If one is faced with a small sample size and if contempo-
raneous correlations are small, then there is a loss in finite
sample efficiency with estimated generalized NSUR because
of the uncertain est imator 2. In this case,  procedure 1 is  best .
In my biomass work,  modeling many different species,  I  have
never found contemporaneous correlations to be sufficiently
small to cause concern. Therefore, I almost unilaterally rec-
ommend the joint-generalized least  squares approach for both
l inear  and nonlinear  modeling of  biomass equat ion systems.
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Erratum 
 
Parresol, B.R.  2001.  Additivity of nonlinear biomass equations.  Can. J. For. Res. 31: 865-878. 
 
Errors appear in the published version of this paper; the author requests that readers take note of 
the following corrections: 
 

p. 870  In the computation for ¶ wood(new)ˆvar( )y , it should read “+ 8.46 kg2” and not “× 8.46 kg2”. 
 
p. 871  Column 2, below eq. 20, the column vector for εε  should be 

1

2

M

 
 
 
 
 
  

εε
εε

εε
M

 

 
p. 872  Within eq. 22 there should not be a prime symbol on the beta vector under f1, it should 

read 1′∂
∂
f
ββ

. 

 
p. 873  Equation 28b should start with ˆiy , the subscript i was left off. 
 
p. 874  After the sentence “The error is computed using eq. 27 and results in” the formula should 

read 
4

2 2
ˆ 4 4

ˆ( ) ( ) 9.77 kgyS ′= =bb bΣΣf f . 
 
p. 875  Column 1, first paragraph 
“. . .the major differences occur with b31 and b32.” Should read “. . . the major differences occur 
with b31 and b33.” 


